

Monday 13 May 2013 – Afternoon

AS GCE MATHEMATICS

4721/01 Core Mathematics 1

QUESTION PAPER

Candidates answer on the Printed Answer Book.

OCR supplied materials:

- Printed Answer book 4721/01
- List of Formulae (MF1)

Other materials required: None Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

These instructions are the same on the Printed Answer Book and the Question Paper.

- The Question Paper will be found in the centre of the Printed Answer Book.
- Write your name, centre number and candidate number in the spaces provided on the Printed Answer Book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the Printed Answer Book. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer **all** the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Do **not** write in the bar codes.
- You are **not** permitted to use a calculator in this paper.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.

INFORMATION FOR CANDIDATES

This information is the same on the Printed Answer Book and the Question Paper.

- The number of marks is given in brackets [] at the end of each question or part question on the Question Paper.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is 72.
- The Printed Answer Book consists of **12** pages. The Question Paper consists of **4** pages. Any blank pages are indicated.

INSTRUCTION TO EXAMS OFFICER/INVIGILATOR

• Do not send this Question Paper for marking; it should be retained in the centre or recycled. Please contact OCR Copyright should you wish to re-use this document.

- 1 Express each of the following in the form $a\sqrt{5}$, where *a* is an integer.
 - (i) $4\sqrt{15} \times \sqrt{3}$ [2]

(ii)
$$\frac{20}{\sqrt{5}}$$
 [1]

(iii)
$$5^{\frac{3}{2}}$$
 [1]

- 2 Solve the equation $8x^6 + 7x^3 1 = 0.$ [5]
- 3 It is given that $f(x) = \frac{6}{x^2} + 2x$. (i) Find f'(x). [3]
 - (ii) Find f''(x). [2]
- 4 (i) Express $3x^2 + 9x + 10$ in the form $3(x + p)^2 + q$. [3]
 - (ii) State the coordinates of the minimum point of the curve $y = 3x^2 + 9x + 10$. [2]
 - (iii) Calculate the discriminant of $3x^2 + 9x + 10$.

5 (i) Sketch the curve
$$y = \frac{2}{x^2}$$
. [2]

- (ii) The curve $y = \frac{2}{x^2}$ is translated by 5 units in the negative x-direction. Find the equation of the curve after it has been translated. [2]
- (iii) Describe a transformation that transforms the curve $y = \frac{2}{x^2}$ to the curve $y = \frac{1}{x^2}$. [2]
- 6 A circle C has equation $x^2 + y^2 + 8y 24 = 0$.
 - (i) Find the centre and radius of the circle.
 - (ii) The point A (2, 2) lies on the circumference of C. Given that AB is a diameter of the circle, find the coordinates of B.
- 7 Solve the inequalities
 - (i) 3 8x > 4, [2]
 - (ii) $(2x-4)(x-3) \le 12.$ [5]

[3]

[2]

- 8 *A* is the point (-2, 6) and *B* is the point (3, -8). The line *l* is perpendicular to the line x 3y + 15 = 0and passes through the mid-point of *AB*. Find the equation of *l*, giving your answer in the form ax + by + c = 0, where *a*, *b* and *c* are integers. [7]
- 9 (i) Sketch the curve $y = 2x^2 x 6$, giving the coordinates of all points of intersection with the axes.[5]
 - (ii) Find the set of values of x for which $2x^2 x 6$ is a decreasing function. [3]
 - (iii) The line y = 4 meets the curve $y = 2x^2 x 6$ at the points P and Q. Calculate the distance PQ. [4]
- 10 The curve $y = (1 x)(x^2 + 4x + k)$ has a stationary point when x = -3.
 - (i) Find the value of the constant *k*. [7]
 - (ii) Determine whether the stationary point is a maximum or minimum point. [2]
 - (iii) Given that y = 9x 9 is the equation of the tangent to the curve at the point *A*, find the coordinates of *A*. [5]

Question		Answer	Marks	Guidan	Guidance	
1	(i)	4\sqrt{45}	M1	or $4\sqrt{5}\sqrt{3} \times \sqrt{3}$ (not just $4\sqrt{5 \times 3} \times \sqrt{3}$) or $\sqrt{720}$ or $\sqrt{240} \times \sqrt{3}$ or better	For method mark, makes a correct start to manipulate the expression i.e. at least combines two parts correctly or aplits one part correctly.	
		$=12\sqrt{5}$	A1	Correctly simplified answer	spins one part correctly	
			[2]			
1	(ii)	$\frac{20\sqrt{5}}{5} = 4\sqrt{5}$	B1	cao , do not allow unsimplified, do not allow if clearly from wrong working		
			[1]			
1	(iii)	5√5	B1	cao www , do not allow unsimplified, do not allow if clearly from wrong working		
			[1]			
2		$ \begin{array}{c} k = x^{3} \\ 8k^{2} + 7k - 1 = 0 \end{array} $	M1*	Use a substitution to obtain a quadratic or factorise into 2 brackets each containing x^3	No marks if whole equation cube rooted etc. No marks if straight to formula with no evidence of substitution at start and no cube rooting/cubing at end.	
		(8k-1)(k+1) = 0	DM1 *	Correct method to solve a quadratic		
		$k = \frac{1}{8}, \ k = -1$	A1	Both values of k correct	Spotted solutions:	
			M1	Attempt to cube root at least one value to obtain x	If M0 DMO or M1 DM0 SC B1 $x = -1$ www	
		$x = \frac{1}{2}, x = -1$	A1	Both values of <i>x</i> correct and no other values	SC B1 $x = \frac{1}{2}$ www (Can then get 5/5 if both found www and exactly two solutions justified)	
			[5]		and exactly two solutions justified)	

Question		Answer	Marks	Guidance	
3	(i)	$f(x) = 6x^{-2} + 2x$ $f'(x) = -12x^{-3} + 2$	M1	kx^{-3} obtained by differentiation	
			A1	$-12x^{-3}$	ISW incorrect simplification after correct expression
			B1	2x correctly differentiated to 2	
3	(ii)	$f''(x) = 36x^{-4}$	M1	Attempt to differentiate their (i) i.e. at least one term "correct"	Allow constant differentiated to zero
			A1	Fully correct cao No follow through for A mark	ISW incorrect simplification after correct expression
			[2]		_
4	(i)	$3(x^2+3x)+10$			If p , q found correctly, then ISW slips in format.
		$= 3\left(x + \frac{3}{2}\right)^2 - \frac{27}{4} + 10$	B1	$\left(x+\frac{3}{2}\right)^2$	3(x + 1.5) - 3.25 B1 M0 A0 3(x + 1.5) + 3.25 B1 M1 A1 (BOD) $3(x + 1.5x)^2 + 3.25$ B0 M1 A0 $3(x^2 + 1.5)^2 + 3.25$ B0 M1 A0
			M1	$10-3p^2 \text{ or } \frac{10}{3}-p^2$	$3(x - 1.5)^2 + 3.25$ B0 M1 A1 (BOD) $3 x (x + 1.5)^2 + 3.25$ B0M1A0
		$=3\left(x+\frac{3}{2}\right)^{2}+\frac{13}{4}$	A1	Allow $p = \frac{3}{2}, q = \frac{13}{4}$ A1 www	
			[3]		
4	(ii)	$\left(-\frac{3}{2},\frac{13}{4}\right)$	B1 B1	FT i.e. – their p FT i.e. their q	If restarted e.g. by differentiation: Correct method to find <i>x</i> value of minimum point M1
			[2]		Fully correct answer www A1
4	(iii)	$9^2 - (4 \times 3 \times 10)$	M1	Uses $b^2 - 4ac$	Use of $\sqrt{b^2 - 4ac}$ is M0 unless
		= -39	A1	Ignore >0, <0 etc. ISW comments about number of roots	recovered
			[2]		

4721

Q	uestion	Answer	Marks	Guidance	
5	(i)		B1 B1	Excellent curve for $y = \frac{2}{x^2}$ in either quadrant Excellent curve for $y = \frac{2}{x^2}$ in other quadrant and no more. SC B1 Reasonably correct curves in 1st and 2nd quadrants and no more	 N.B. Ignore 'feathering' now that answers are scanned. For Excellent: Correct shape, not touching axes, asymptotes clearly the axes. Allow slight movement away from asymptote at one end but not more. Not finite. For SC B1, graph must not touch axes more than twice.
5	(ii)		[2] M1	2 2	
5	(II)	$y = \frac{2}{\left(x+5\right)^2}$	A1	$\frac{2}{(x+5)^2} \text{ or } \frac{2}{(x-5)^2} \text{ seen}$ Fully correct, must include "y =" or "f(x) ="	
5	(iii)	Stretch scale factor $\frac{1}{2}$ parallel to <i>y</i> -axis	B1 B1 [2]	Or "stretched" etc; do not accept squashed, compressed etc. oe e.g. scale factor $\sqrt[1]{\sqrt{2}}$ parallel to <i>x</i> -axis	0/2 if more than one type of transformation mentioned ISW non-contradictory statements For "parallel to the <i>y</i> -axis" allow "vertically", "up", "in the (positive) <i>y</i> direction". Do not accept "in/on/ across/up/along/to/towards the <i>y</i> -axis"
6	(i)	Centre (0, -4) $x^{2} + (y+4)^{2} - 16 - 24 = 0$ Radius = $\sqrt{40}$	B1 M1 A1 [3]	$(y \pm 4)^2 - 4^2$ seen (or implied by correct answer) Do not allow A mark from $(y - 4)^2$	Or attempt at $r^2 = f^2 + g^2 - c$ A0 for $\pm \sqrt{40}$
6	(ii)	(-2, -10)	B1FT B1FT	FT through centre given in (i) FT through centre given in (i)	i.e. (their $2x - 2$, their $2y - 2$) Apply same scheme if equation of diameter found and attempt to solve simultaneously; no marks until a correct value of x/y found.

Question		Answer	Marks	Guidance	
7	(i)	8x < -1	B1	soi, allow $-8x > 1$ but not just $8x + 1 < 0$	Allow \leq or \geq for first mark
		$x < -\frac{1}{2}$	B1	Correct working only, allow $-\frac{1}{x}$	Do not ISW if contradictory
		8		8	Do not allow \leq or \geq
				Do not allow $\frac{1}{1}$	
			[2]	-8	
7	(ii)	$2r^2 - 10r < 0$	2	Expand brackets and rearrange to collect all	No more than one incorrect term
,	(11)			terms on one side	
		$2x(x-5) \le 0$	DM1*	Correct method to find roots of resulting	Allow $(2x + 0)(x - 5)$
				quadratic	Do not allow $(2x - 4)(x - 3)$, this is the original expression
			A1	0.5 seen as roots $-$ could be on sketch graph	original expression.
			DM1*	Chooses "inside region" for their roots of their	Dependent on first M1 only
				resulting quadratic (not the original)	·r····································
		$0 \le x \le 5$	A1	Do not accept strict inequalities for final mark	Allow " $x \ge 0, x \le 5$ ", " $x \ge 0$ and $x \le 5$ "
					but do not allow " $x \ge 0$ or $x \le 5$ "
			[5]		
8		(-2+3, 6+-8)	M1	Correct method to find midpoint – can be	NB – "correct" answer can be found
		Midpoint of AB is $\left(\frac{2}{2}, \frac{3}{2}\right)$		implied by one correct value	with wrong mid-pt. Check working
		(1)	A 1		thoroughly.
		$\left(\frac{1}{2},-1\right)$			
			B1	Must be stated or used – just rearranging the	
		Gradient of given line = $\frac{-3}{3}$		equation is not sufficient	
		Gradient of $l = -3$	B1FT	Use of $m_1m_2 = -1$ (may be implied), allow for	
				any initial non-zero numerical gradient	
		$v+1=-3(r-\frac{1}{2})$	M1	Correct equation for line, any non-zero	
				numerical gradient, through their $\left(\frac{1}{2}, -1\right)$	
			A1	Correct equation in any three-term form	
		6x + 2y - 1 = 0	A1	k(6x+2y-1) = 0 for integer k www	Must include "= 0"
			[7]		

Question		Answer	Marks	Guidance	
9	(i)	(2x+3)(x-2) = 0	M1	Correct method to find roots	
		$x = -\frac{3}{2}, x = 2$			
		2 15	A1	Correct roots	
		10	B1	Reasonably symmetrical positive quadratic curve, must cross <i>x</i> axis	
		5	B1	y intercept $(0, -6)$ only	Indicated on graph or clearly stated, but there must be a curve
		-3 -2 -1 0 1 2 3	B1	Good curve, with correct roots indicated and min point in 4th quadrant (not on axis)	Only allow final B1 if curve is clearly intended to be a quadratic symmetrical about min point in 4th quadrant
		-10	[5]		
9	(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4x - 1 = 0$	M1	Attempt to find <i>x</i> coordinate of vertex by differentiating and equating/comparing to zero, completing the square, finding the mid-	SC Award B1 (FT) for $x < 0$ if clearly from their graph
				point of their roots oe	
		Vertex when $x = \frac{1}{4}$	A1	cao	NB Look for solution to 9ii done in the space below 9i graph
		$x < \frac{1}{4}$	A1 FT	$x < \text{their vertex, allow} \le$	
			[3]		
9	(iii)	$2x^2 - x - 6 = 4$	M1	Set quadratic expression equal to 4	
		$2x^2 - x - 10 = 0$			
		(2x-5)(x+2) = 0	M1	Correct method to solve resulting three term quadratic	Not $2x^2 - x - 6 = 0$ with no use of 4
		$x = \frac{5}{2}, x = -2$	A1	Must have both solutions – no mark for one spotted root	
		Distance $PQ = 4\frac{1}{2}$	B1FT	FT from their x values found from their resulting quadratic, provided $y = 4$	Allow $\frac{9}{2}$ oe, but do not accept
			[4]		unsimplified expressions like $\sqrt{\frac{81}{4}}$

Mark Scheme

Q	uestion	Answer	Marks	Guidance	
10	(i)	$y = -x^3 - 3x^2 + 4x - kx + k$	M1	Attempt to multiply out brackets	Must have $\pm x^3$ and 5 or 6 terms
			Al	Can be unsimplified	
		$\frac{\mathrm{d}y}{\mathrm{d}x} = -3x^2 - 6x + 4 - k$		Attempt to differentiate their expansion	If using product rule:
		dx	AI	(NIO II Signs have changed throughout)	Clear attempt at correct rule M1"
		When $x = -3$, $\frac{dy}{dx} = 0$	M1*	Sets $\frac{dy}{dt} = 0$	Differentiates both parts correctly AI
		dx	DM1*	dx	Expand blackets of both parts "DWI
			Diiii	Substitutes $x = -3$ into their $\frac{dy}{dx} = 0$	
		-27 + 18 + 4 - k = 0			Then as main scheme
		k = -5	A1	WWW	
10			[7]		
10	(11)	$\frac{d^2 y}{d^2} = -6x - 6$		Evaluates second derivative at $r = -3$ or other	Alternate valid methods include: 1) Evaluating gradiant at either side
		dx^2	M1	fully correct method	of -3
					2) Evaluating v at either side of -3
				No incorrect working soon in this part is if	3) Finding other turning point and
		When $x = -3$, $\frac{d^2 y}{d^2}$ is positive so min point	A 1	second derivate is evaluated it must be 12	stating "negative cubic so min before
		dx^2	111	(Ignore errors in k value)	max"
			[2]		
10	(iii)	$-3x^2 - 6x + 9 = 9$	M1	Sets their gradient function from (i) (or from a	Allow first \mathbf{M} even if k not found but
				restart) to 9	look out for correct answer from wrong
		2x(x + 2) = 0	A 1	Convert of the sector	working.
		3x(x+2) = 0 x = 0 or $x = -2$	AI	Correct x-values	SEE NEXT PAGE FOR
		x = 0 or $x = 2When x = 0, y = -9 for line$	M1	One of their x-values substituted into both	ALTERIVATIVE WETHODS Note: Putting a value into $x^3 + 3x^2 - 4 =$
		v = -5 for curve		curve and line/substituted into one and	0 (where the line and curve meet) is
				verified to be on the other	equivalent
		When $x = -2$, $y = -27$ for line	M1	Conclusion that $x = -2$ is the correct value <u>or</u>	
		y = -27 for curve		Second <i>x</i> -value substituted into both curve	If curve equated to line before
			A 1	and line/verified as above	differentiating:
		x = -2, y = -27	AI	x = -2, y = -2 / www (Cneck k correct)	NIU AU, can get MINII but AU ww
			[5]		Maximum mark 2/5

4721

Mark Scheme

Question		Answer	Marks	Guidance
10	(iii)	Alternative methodAttempt to solve equations of curve and tangent $(x^3 + 3x^2 - 4 = 0 \text{ oe})$ M1All roots found A1Either1) States $x = -2$ is repeated root so tangent M2 (If double root found but not explicitly stated th Or2) Substitutes one x value into their gradient function Substitutes other x value into their gradient function $x = -2, y = -27$ A1 www	tangent simultaneously and uses valid method to establish at least one root of the resulting cubic at M2 ated that repeated root implies tangent then M0 but B1 if $(-2, -27)$ found) ent function to determine if equal to gradient of the line M1 ent function to determine if equal to gradient of the line M1 ent function to determine if equal to gradient of the line or conclusion that -2 is the correct one M1	
		SC Trial and Improvement Finds at least one value at which the gradient of Verifies on both line and curve B1 2/5	the curve i	s 9 B1

APPENDIX 1

Allocation of method mark for solving a quadratic

e.g. $2x^2 - x - 6 = 0$

1) If the candidate attempts to solve by factorisation, their attempt when expanded must produce the **correct quadratic term** and **one other correct term** (with correct sign):

(2x-3)(x+2)M1 $2x^2$ and -6 obtained from expansion(2x-3)(x+1)M1 $2x^2$ and -x obtained from expansion(2x+3)(x+2)M0only $2x^2$ term correct

2) If the candidate attempts to solve by using the formula

a) If the formula is quoted incorrectly then M0.

b) If the formula is quoted correctly then one sign slip is permitted. Substituting the wrong numerical value for a or b or c scores M0

$\frac{-1\pm\sqrt{(-1)^2-4\times2\times-6}}{2\times2}$	earns M1	(minus sign incorrect at start of formula)
$\frac{1\pm\sqrt{\left(-1\right)^2-4\times2\times6}}{2\times2}$	earns M1	(6 for <i>c</i> instead of -6)
$\frac{-1\pm\sqrt{(-1)^2-4\times2\times6}}{2\times2}$	M0 (2 sig	gn errors: initial sign and c incorrect)
$\frac{1\pm\sqrt{\left(-1\right)^2-4\times2\times-6}}{2\times-6}$	M0 (2 <i>c</i> or	the denominator)

Notes – for equations such as $2x^2 - x - 6 = 0$, then $b^2 = 1^2$ would be condoned in the discriminant and would not be counted as a sign error. Repeating the sign error for *a* in both occurrences in the formula would be two sign errors and score **M0**.

c) If the formula is not quoted at all, substitution must be completely correct to earn the M1

Mark Scheme

3) If the candidate attempts to complete the square, they must get to the "square root stage" involving \pm ; we are looking for evidence that the candidate knows a quadratic has two solutions!

If a candidate makes repeated attempts (e.g. fails to factorise and then tries the formula), mark only what you consider to be their last full attempt